Performance of Low-Risk Criteria in the Evaluation of Young Infants With Fever: Review of the Literature
Anna R. Huppler, Jens C. Eickhoff and Ellen R. Wald
Pediatrics 2010;125:228-233; originally published online Jan 18, 2010; DOI: 10.1542/peds.2009-1070

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.pediatrics.org/cgi/content/full/125/2/228
abstract

OBJECTIVE: The goal was to determine the performance of low-risk criteria for serious bacterial illnesses (SBIs) in febrile infants in prospective studies in which empiric antibiotic treatment was withheld, compared with studies (prospective and retrospective) in which empiric antibiotic treatment was administered.

METHODS: A search of the English-language literature was undertaken by using a PubMed database and reference lists of relevant studies of fever, low-risk criteria, and SBIs. Studies of infants ≥90 days of age, infants with specific infections, or infants with additional risk factors for infection were excluded. Publications were categorized as retrospective, prospective with empiric antibiotic treatment for all patients, or prospective with antibiotics withheld. The relative risk of SBI in high-risk versus low-risk patients was determined for pooled data in each category. The rates of SBIs in low-risk patients in each category were compared.

RESULTS: Twenty-one studies met the inclusion criteria. In prospective studies in which patients were cared for without empiric antibiotic treatment, 6 patients assigned to the low-risk category had SBIs; all recovered uneventfully. The rate of SBIs in these low-risk patients was 0.67%. The relative risk of SBIs in high-risk versus low-risk patients in these studies was 30.56 (95% confidence interval: 7.0–68.13). The rate of SBIs in low-risk patients in all studies was 2.23%. The rate of SBIs in low-risk patients in the prospective studies without empiric antibiotic treatment was significantly different from the rate in all other studies (0.67% vs 2.71%; \(P = .01 \)).

CONCLUSIONS: Low-risk criteria perform well in prospective studies in which empiric antibiotic treatment is withheld. These criteria allow ~30% of young febrile infants to be observed without antibiotic treatment, thus avoiding unnecessary hospitalization, nosocomial infection, injudicious use of antibiotics, and adverse effects of antibiotics. Pediatrics 2010;125:228–233
Fever in very young infants is a common and important problem. Neonates have unique vulnerabilities to infection because of their immature immune systems and incomplete barriers to invasion. The rate of serious bacterial infections (SBIs) in young febrile infants has been reported to be between 8.5% and 12%.\(^\text{7,8}\)

Before 1985, it was recommended that all febrile infants (<60 days of age) be hospitalized and treated with parenteral antibiotic therapy after a full sepsis evaluation, because various criteria used to identify “high-risk” infants were insufficiently sensitive to identify all infants with SBIs.\(^\text{4-6}\) However, the approach of hospitalizing and treating all febrile young infants with empiric antibiotic therapy had the disadvantages of unnecessary hospitalizations, nosocomial infections, injudicious use of antibiotics, emergence of resistant bacteria, and adverse effects of antibiotics.\(^\text{7,8}\)

During the late 1980s and early 1990s, investigators changed strategies and attempted to identify febrile infants who were at low risk for SBIs and might be treated with close observation (inpatient or outpatient) without antibiotic treatment.\(^\text{3,9-16}\) After the development of various low-risk criteria, several groups undertook studies to validate the criteria in their own populations.\(^\text{17-27}\) The designs of those studies alternated between retrospective and prospective, with variable approaches to empiric use of ceftriaxone. We hypothesized that prospective studies that implemented a strategy of observation without antibiotic treatment for low-risk infants, thereby relying on meticulous evaluation and careful decision-making, would show significantly better performance of low-risk criteria than would studies that continued to treat all patients (prospectively or retrospectively), regardless of risk stratification.

METHODS

We searched the English-language literature for original articles studying low-risk criteria for SBIs in febrile infants between 0 and 90 days of age. A National Library of Medicine PubMed database search for articles was performed by using combinations of the following search terms: “low risk criteria,” “criteria,” or “risk”; “serious bacterial illness,” “serious bacterial infection,” “bacterial infection,” or “bacteremia”; and “fever” or “fever without source.” Studies were limited to humans, infants, and publication after 1985.

The search criteria identified 740 articles. Bibliographic references from the relevant studies (original research and review articles) were reviewed for additional citations. Articles were excluded on the basis of abstracts if they focused on infants >90 days of age, patients with underlying conditions (such as patients with sickle cell disease, neutropenia, malignancy, central vascular catheters, or other immunocompromised states), or patients with a single focus of bacterial infection (eg, urinary tract infection [UTI] or meningitis). Sixty-three publications were reviewed carefully for inclusion criteria, definition of SBIs, and evaluations performed for study patients. The components of the low-risk criteria used in each study were reviewed and compared with the original Rochester Criteria\(^\text{9}\) (Tables 1 and 2). Studies with overlapping subjects were excluded.

Articles were grouped according to type of study, and total patients were aggregated. The categories of studies were prospective without antibiotic treatment of low-risk infants, prospective with antibiotic treatment of low-risk infants, and retrospective.

Portions of studies using different management plans for low-risk infants were classified accordingly. Data were extracted from the tables and text of each study and included the number of low-risk infants, the number of high-risk infants, the number of SBIs in each group, types of SBIs, and the outcomes of low-risk infants with SBIs. The random-effects method described by DerSimonian and Laird\(^\text{28}\) was used to estimate overall relative risks (RRs) and corresponding 95% confidence intervals (CIs). This method accounts for the heterogeneity of studies through a statistical parameter representing interstudy variation.

Heterogeneity between studies was assessed by using the \(Q\) statistic, as well as graphic techniques. The \(\beta\)-binomial model for overdispersed data\(^\text{29}\) was used to estimate pooled rates of SBIs for low- and high-risk patients. Comparison of pooled rates between groups was performed by using a likelihood ratio test. Linear regression analysis was used to evaluate the trend in the proportions of infants designated as being at low risk over time.

RESULTS

Twenty-one studies met inclusion criteria; 14 were prospective studies (Tables 3 and 4) and 7 were retrospective (Table 5).\(^\text{3,9-27,30}\) Among the prospective studies, 9 treated low-risk patients empirically with antibiotics, 4 monitored low-risk patients without antibiotic treatment, and 1 used both strategies.
TABLE 2 Variations of Rochester Criteria

<table>
<thead>
<tr>
<th>Type of Low-Risk Criteria</th>
<th>Differences From Original Rochester Criteria</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rochester 2</td>
<td>If diarrhea, ≤5–10 WBCs per high-power field in stool</td>
<td>10, 17, 18, 20, 30</td>
</tr>
<tr>
<td>Modified Rochester</td>
<td>Normal inflammatory markers (C-reactive protein levels or ESR)</td>
<td>13, 19, 21</td>
</tr>
<tr>
<td>Milwaukee</td>
<td>CSF: ≤10 WBCs per mm³; WBC count: ≤15 000 cells per mm³ (no band criteria); urinalysis: ≤5–10 WBCs per high-power field, no bacteria; urine dipstick: negative LE/nitrite</td>
<td>14</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>Infant observation score: ≤10; WBC count: ≤15 000 cells per mm³ (no band criteria); urinalysis: ≤10 WBCs per high-power field, few or no bacteria; CSF: ≤8 WBCs per mm³, no bacteria, nonbloody</td>
<td>11</td>
</tr>
<tr>
<td>Philadelphia 2</td>
<td>WBC count: ≤15 000 cells per mm³; band/ neutrophil ratio: ≤0.2; CSF: ≤8 WBCs per mm³, no bacteria, nonbloody</td>
<td>20, 22–25</td>
</tr>
<tr>
<td>Boston</td>
<td>WBC count: <20 000 cells per mm³ (no band criteria); CSF: <10 WBCs per mm³; urinalysis: <10 WBCs per high-power field, no LE</td>
<td>12, 24</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>Enhanced urinalysis: ≤8 WBCs per mm³, negative Gram stain results; CSF: ≤5 WBCs per mm³, negative Gram stain results (if ≤8 wk)</td>
<td>26</td>
</tr>
<tr>
<td>Impression of sepsis</td>
<td>“Not ill” or negative clinical impression of sepsis (history, physical examination, ESR of ≤30 mm/h; WBC count of <15 000 cells per mm³)</td>
<td>3, 15, 16</td>
</tr>
</tbody>
</table>

WBC indicates white blood cell; ESR, erythrocyte sedimentation rate; CSF, cerebrospinal fluid; LE, leukocyte esterase. The infant observation score includes 5 observations, that is, quality of cry, reaction to parent stimulation and state variation, color, hydration, and response to social overtures, each scored on a scale of 1 to 5.31

The type of low-risk criteria was categorized, with 10 studies using variations of the Rochester criteria, 6 studies using Philadelphia criteria (2 comparing Rochester criteria with Philadelphia criteria), 2 studies using Boston criteria, 1 study using Pittsburgh criteria, 1 study using Milwaukee criteria, and 3 studies using “clinical impression of sepsis” or “not ill” descriptions (Tables 1 and 2). Studies were performed between 1979 and 1999. One study12 included only children in the low-risk category, without a high-risk comparison group. Fever was defined as a temperature of >38.2°C in 1 study,11 >38.1°C in 3 studies,15,20,27 and >38.0°C in the rest of the studies.

SBIs included bacteremia, meningitis, bacterial diarrhea, pneumonia, and UTIs.51 The defining characteristics for each type of infection varied slightly between the studies, most notably in the definition of UTI. Two studies accepted bagged urine specimens for culture, resulting in 8 diagnoses of UTIs in low-risk patients.13,19 Ten studies diagnosed UTIs in patients with a total of 1858 patients were included, and 870 were classified as being at low risk. Six patients with SBIs were missed, including 2 patients with bacteremia and 4 patients with UTIs. The first child with bacteremia received parenteral antibiotic treatment within 24 hours after presentation and recovered uneventfully.11 The identity of the organism was not noted. The second child had a blood culture positive for Yersinia enterocolitica and fared well after treatment.18 The authors noted that a confirmatory culture was not performed before initiation of treatment. Three urine specimens obtained with sterile technique yielded either group B streptococcus or Escherichia coli.18 Those patients fared well with treatment. One urine specimen collected by bag yielded E coli.19

TABLE 3 Prospective Studies of Performance of Low-Risk Criteria for SBIs in Young Infants in Which Antibiotics Were Withheld From Low-Risk Patients

<table>
<thead>
<tr>
<th>Year and Reference</th>
<th>Criteria Type</th>
<th>Age, d</th>
<th>No. of Patients</th>
<th>No. of High-Risk Patients</th>
<th>Cases of SBI in High-Risk Patients</th>
<th>Rate of SBI in High-Risk Patients, %</th>
<th>No. of Low-Risk Patients</th>
<th>Cases of SBI in Low-Risk Patients</th>
<th>Rate of SBI in Low-Risk Patients, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>198819</td>
<td>Rochester 2</td>
<td>0–58</td>
<td>236</td>
<td>88</td>
<td>21</td>
<td>23.9</td>
<td>148</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>199511</td>
<td>Philadelphia</td>
<td>29–56</td>
<td>747</td>
<td>460</td>
<td>64</td>
<td>13.9</td>
<td>287</td>
<td>1</td>
<td>0.35</td>
</tr>
<tr>
<td>199414</td>
<td>Rochester 2</td>
<td>0–60</td>
<td>203</td>
<td>196</td>
<td>64</td>
<td>33.6</td>
<td>131</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td>199715</td>
<td>Modified Rochester</td>
<td>4–28</td>
<td>250</td>
<td>192</td>
<td>40</td>
<td>33.6</td>
<td>131</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td>199922</td>
<td>Philadelphia 2</td>
<td>29–60</td>
<td>422</td>
<td>321</td>
<td>43</td>
<td>13.4</td>
<td>101</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1858</td>
<td>988</td>
<td>168</td>
<td>20.6</td>
<td>870</td>
<td>6</td>
<td>0.67</td>
</tr>
</tbody>
</table>
In the rest of the studies summarized in Tables 4 and 5 (prospective studies in which patients received empiric antibiotic treatment and retrospective studies), 89 low-risk infants (2.7%) were diagnosed as having SBIs. This total included 2 cases of meningitis (1 with UTI and 1 with bacteremia), 22 cases of bacteremia (1 with gastroenteritis and 1 with osteomyelitis), 39 cases of UTI, and 14 cases of gastroenteritis. Twelve cases of SBI did not have a source identified.

Table 6 shows a comparison of the performance of the low-risk criteria for SBIs in young infants according to study design. The overall validity of the low-risk criteria in pooled studies was assessed by calculating the RR for SBI in high-risk versus low-risk infants. The RR reached statistical significance in all 3 categories of studies. In prospective studies with no empiric antibiotic treatment, the RR was 30.56 (95% CI: 7.0–68.13). In prospective studies with empiric antibiotic treatment, the RR was 8.75 (95% CI: 2.29–15.21). In retrospective studies, the RR was 6.93 (95% CI: 3.10–10.75). Of importance, there was a statistically significant difference in the rates of SBIs in low-risk patients in the prospective studies with no empiric antibiotic treatment, compared with all other studies (P for difference = .010). When prospective studies with no empiric antibiotic treatment were compared with all other studies, no significant difference in the rate of SBIs in high-risk patients was observed.
risk patients was found (RR: 1.10; \(P = .75 \)).

An analysis examining the proportion of infants designated as low risk in all studies showed a significant trend toward assigning fewer infants to the low-risk category over time (\(P = .001 \)). The slope parameter of the linear regression model of the proportions of infants designated as low risk by time (year) was \(0.015 \) (\(P < .001 \)). Early studies placed 60% of children in the low-risk category. By the middle 1990s, only 30% of children were considered at low risk, as illustrated in Fig 1.

DISCUSSION

The impetus for this study was the apparent discrepancy in the rate of SBIs among low-risk febrile infants reported in the literature. Previous studies reported a range of rates of SBIs in low-risk infants of 0% to 8.3%.\(^{10,15,22,26}\) This can be explained, in part, by the different sets of criteria used by various investigators (Table 2).\(^{3,9–26,30}\) We showed that the rates of SBIs in low-risk patients in both retrospective studies and prospective studies using empiric antibiotic treatment were the same (2.7%) and were significantly different from the rate of SBIs in low-risk patients in prospective studies in which antibiotics were withheld (0.67%). We hypothesized that the low-risk criteria would function best when used in prospective studies in which low-risk patients underwent observation alone. Without reliance on empiric antibiotic treatment, it would be essential to capture all infants at risk of early deterioration in the high-risk group. Careful sample collection, as well as meticulous physical examination, excluded infants with SBIs from the low-risk group.

For physicians to rely on clinical algorithms, they must be convinced that patients will not be placed in jeopardy. The clinical predictability provided by low-risk criteria will be deemed satisfactory if the children identified as being at low risk either do not have a SBI or remain in stable condition until the SBI is recognized. In prospective trials that treated low-risk infants with observation alone, the low-risk criteria “missed” SBIs in 6 patients (bacteremia in 2 patients and UTIs in 4 patients). One of the cases involved a positive urine culture from a bagged specimen, which may represent a contaminant. These patients were treated with appropriate antibiotics when the cultures yielded positive results, and all recovered uneventfully. Therefore, careful application of these low-risk criteria was very effective in identifying children from whom empiric antibiotic therapy could be withheld.

Overall, data from 8540 infants were analyzed in this study. The total number of SBIs was 931, that is, 10.9%, consistent with rates commonly reported in the literature. With the use of low-risk criteria, \(\sim 30\% \) of febrile infants can be identified as being at low risk for SBIs and can be treated with observation alone. These patients can be spared the negative effects that may be associated with empiric use of antibiotics, including cost, adverse effects of medications, development of resistant organisms, and psychosocial stresses on family dynamics. The criteria must be applied carefully to avoid misassignment of infants. Special attention should be given to the physical examination and medical history.

This study represents a comprehensive review of the literature that has evaluated the effectiveness of low-risk criteria in the identification of infants unlikely to have SBIs over the previous
REFERENCES

